Applied Linear Algebra

Choose three out of the four problems. $(3 \times 10 \text{pts})$

- 1. Let A be a Hermitian matrix
 - (a) Show that eigenvalues of A are real.
 - (b) Show that two eigenvectors of A with distinct eigenvalues are orthogonal to each others.
- 2. Let $S: \mathbf{R}^2 \to \mathbf{R}^2$ be a self-adjoint operator on \mathbf{R}^2 with the Euclidean inner product, $\langle v, w \rangle = v \cdot w$ for every pair $v, w \in \mathbf{R}^2$: If we use the column form $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ of vectors v with respect to the standard basis of \mathbf{R}^2 , we have $\langle v, w \rangle = v^T w$ and S(v) = Av, where A is a real symmetric 2×2 matrix representing S.
 - (a) Consider the following real valued function k on the space of all unit vectors on \mathbb{R}^2 given by

$$k(u) = \langle S(u), u \rangle$$
, where $u \in \mathbb{R}^2$ and $\langle u, u \rangle = 1$.

Show that the maximum and the minimum of the function k are the eigenvalues of unit eigenvectors of S. (hint. You may use the matrix notations and the method of Lagrangian multiplier).

(b) Show that, for every $v, w \in \mathbb{R}^2$, we have

$$\langle S(v), S(w) \rangle - \operatorname{tr}(S) \langle S(v), w \rangle + \operatorname{det}(S) \langle v, w \rangle = 0.$$

(hint. You may use matrix notations for the left-hand-side of the above.)