*** 문제, 큇면에도 있음 ***

Qualifying Examination -Analysis - 2023 July

1. (10 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Suppose that there is $r \in(0,1)$ such that $\left|f^{\prime}(x)\right| \leq r$ for all x. Let $a_{1} \in \mathbb{R}$ and define $a_{n+1}=f\left(a_{n}\right)$. Show that the sequence a_{n} converges.
2. (10 points) For real sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, assume $\sum a_{n}$ converges, and $\left\{b_{n}\right\}$ is monotone and bounded. Show that $\sum a_{n} b_{n}$ also converges.
3. (10 points) Is closed and bounded set compact always? Prove or provide a counter example.
4. (15 points) Consider a sequence of real-valued functions

$$
f_{n}(x)=\frac{x}{1+n x^{2}}, \quad x \in \mathbb{R}, \quad n \in \mathbb{N} .
$$

(1) (10pts) Show that $f_{n} \rightarrow f$ uniformly for some f.
(2) (5pts) Does $f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)$ hold for all $x \in \mathbb{R}$?
5. (15 points) Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{e^{i t x}}{(x+i)^{2}} d x,-\infty<t<\infty .
$$

6. (10 points) Let $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by $u(x, y)=$ $x^{3}-3 x y^{2}$. Show that u is harmonic and find $v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(x+i y)=u(x, y)+i v(x, y)$ is analytic.
7. (10 points) Let the points a, b, and c lie on the unit circle of the complex plane and satisfy $a+b+c=0$. Prove that a, b, and c form the vertices of an equilateral triangle.
8. (10 points) [Second-order Runge-Kutta method] For a continuous real function $f:[0, \infty) \times \mathbb{R} \longrightarrow \mathbb{R}$, we have an ordinary differential equation

$$
\frac{d}{d t} x(t)=f(t, x(t)), \quad \text { with } x(0)=x_{0} .
$$

Assume that $\frac{\partial}{\partial t} f(t, x)$ and $\frac{\partial}{\partial x} f(t, x)$ exists for any t and x. Let $0<t_{1}<$ $t_{2}<\cdots<t_{N}$ with $t_{i+1}-t_{i}=h$ for a sufficiently small h. Define for
$i=0,1,2, \ldots, N-1$, $x_{i+1}=x_{i}+\frac{h}{2}\left(K_{1}+K_{2}\right)$, where $K_{1}=f\left(t_{i}, x_{i}\right)$ and $K_{2}=f\left(t+h, x_{i}+h K_{1}\right)$.

Show that $\left|x\left(t_{i}\right)-x_{i}\right| \leq C_{i} h^{3}$ with some positive constant C_{i} for each $i=$ $0, \ldots, N$.
(Hint: use the second order Taylor expansion for $x(t)$ and first order Taylor expansion of $f(t, x)$.)
9. (5 points) Let $y=f(x)$ satisfy the following ordinary differential equation:

$$
(x+2) \sin y+x \cos y \frac{d y}{d x}=0 .
$$

Find the (implicit) general solution of this differential equation by using an integrating factor $\mu(x)$ such that $\mu(x)(x+2) \sin y+\mu(x) x \cos y \frac{d y}{d x}=0$ is an exact differential equation in \mathbb{R}^{2}. (i.e. $\frac{\partial}{\partial y}[\mu(x)(x+2) \sin y]=\frac{\partial}{\partial x}[\mu(x) x \cos y]$ for any x and y.)
10. (5 points) Find r_{1} and r_{2} such that any solution $y(x)$ to $2 x^{2} y^{\prime \prime}+$ $x y^{\prime}-y=0$ can be written as $y(x)=a_{1} x^{r_{1}}+a_{2} x^{r_{2}}$ with some constants a_{1} and a_{2}.

