*** 문제, 뒷면에도 있음 ***

Qualifying Examination - Analysis - 2023 July

1. (10 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Suppose that there is $r \in (0, 1)$ such that $|f'(x)| \leq r$ for all x. Let $a_1 \in \mathbb{R}$ and define $a_{n+1} = f(a_n)$. Show that the sequence a_n converges.

2. (10 points) For real sequences $\{a_n\}$ and $\{b_n\}$, assume $\sum a_n$ converges, and $\{b_n\}$ is monotone and bounded. Show that $\sum a_n b_n$ also converges.

3. (10 points) Is closed and bounded set compact always? Prove or provide a counter example.

4. (15 points) Consider a sequence of real-valued functions

$$f_n(x) = \frac{x}{1+nx^2}, \quad x \in \mathbb{R}, \quad n \in \mathbb{N}.$$

(1) (10pts) Show that $f_n \to f$ uniformly for some f.

(2) (5pts) Does $f'(x) = \lim_{n \to \infty} f'_n(x)$ hold for all $x \in \mathbb{R}$?

5. (15 points) Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{e^{itx}}{(x+i)^2} dx, \ -\infty < t < \infty.$$

6. (10 points) Let $u : \mathbb{R}^2 \to \mathbb{R}$ be the function defined by $u(x, y) = x^3 - 3xy^2$. Show that u is harmonic and find $v : \mathbb{R}^2 \to \mathbb{R}$ such that the function $f : \mathbb{C} \to \mathbb{C}$ defined by f(x + iy) = u(x, y) + iv(x, y) is analytic.

7. (10 points) Let the points a, b, and c lie on the unit circle of the complex plane and satisfy a + b + c = 0. Prove that a, b, and c form the vertices of an equilateral triangle.

8. (10 points) [Second-order Runge-Kutta method] For a continuous real function $f:[0,\infty)\times\mathbb{R}\longrightarrow\mathbb{R}$, we have an ordinary differential equation

$$\frac{d}{dt}x(t) = f(t, x(t)), \quad \text{with } x(0) = x_0.$$

Assume that $\frac{\partial}{\partial t} f(t, x)$ and $\frac{\partial}{\partial x} f(t, x)$ exists for any t and x. Let $0 < t_1 < t_2 < \cdots < t_N$ with $t_{i+1} - t_i = h$ for a sufficiently small h. Define for

$$i = 0, 1, 2, \dots, N - 1,$$

 $x_{i+1} = x_i + \frac{h}{2}(K_1 + K_2),$ where $K_1 = f(t_i, x_i)$ and $K_2 = f(t + h, x_i + hK_1).$

Show that $|x(t_i) - x_i| \leq C_i h^3$ with some positive constant C_i for each $i = 0, \ldots, N$.

(Hint: use the second order Taylor expansion for x(t) and first order Taylor expansion of f(t, x).)

9. (5 points) Let y = f(x) satisfy the following ordinary differential equation:

$$(x+2)\sin y + x\cos y\frac{dy}{dx} = 0.$$

Find the (implicit) general solution of this differential equation by using an integrating factor $\mu(x)$ such that $\mu(x)(x+2) \sin y + \mu(x)x \cos y \frac{dy}{dx} = 0$ is an exact differential equation in \mathbb{R}^2 . (i.e. $\frac{\partial}{\partial y} \left[\mu(x)(x+2) \sin y \right] = \frac{\partial}{\partial x} \left[\mu(x)x \cos y \right]$ for any x and y.)

10. (5 points) Find r_1 and r_2 such that any solution y(x) to $2x^2y'' + xy' - y = 0$ can be written as $y(x) = a_1x^{r_1} + a_2x^{r_2}$ with some constants a_1 and a_2 .