QE(ALGEBRA), 2023 JULY

- 1 (14 pt) Show that every group of order 105 is not simple.
- 2 (14 pt) Construct a non-cyclic infinite group G in which all proper subgroups are cyclic.
- 3 (14 pt) Show that an integral domain cannot contain two subrings isomorphic to \mathbb{Z}/p and \mathbb{Z}/q for some two distinct primes p and q.
- 4 (14 pt) Suppose that every ideal of an integral domain R is finitely generated. Prove that every ideal of R[x] is finitely generated.
- 5 (14 pt) Suppose that E is a Galois extension over a field K, and K is Galois over a field F. Is E Galois over F? Prove or disprove it.
- 6 (14 pt) Let G be the Galois group of $x^8 4x^4 1$ over \mathbb{Q} and denote by

 $H_0 = \{e\} < \cdots < H_n = G$

a composition series of G. Find n and H_{i+1}/H_i for each $0 \le i \le n-1$.

- 7 A group G is called Galois if there is a Galois extension K over a field F such that G is isomorphic to Gal(K/F).
 - (a) (7 pt) Show that the symmetric group of degree n, i.e. S_n , is Galois.
 - (b) (7 pt) Show that every finite group is Galois.