Qualifying Examination -Analysis - 2023 January

1. (10 points) (a) Show that

$$
\lim _{p \rightarrow \infty}\|f\|_{L^{p}[0,1]}=\sup _{x \in[0,1]}|f(x)|
$$

for any continuous function f on $[0,1]$.
(b) What if we consider $[0, \infty)$ instead of $[0,1]$?
2. (10 points) Let $f(x)$ be a continuous function on $[0, \infty)$ such that $\lim _{x \rightarrow \infty} f(x)=L$ for some $L \in \mathbb{R}$. Prove

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(n x) d x=L
$$

3. (10 points) Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n}(n!)^{\frac{1}{n}}=e^{-1}
$$

4. (15 points) Consider $f_{n}(x)=\sin (n x)$ for $-\pi \leq x \leq \pi$ and $n=1,2,3, \cdots$.
(a) (5 pts) Show that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is bounded in $L^{2}[-\pi, \pi]$ where $L^{2}[-\pi, \pi]$ is square Lebesgue integrable function space.
(b) (5 pts) Show that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is closed in $L^{2}[-\pi, \pi]$.
(c) (5 pts) Is $\left\{f_{n}\right\}_{n=1}^{\infty}$ compact in $L^{2}[-\pi, \pi]$? Prove or disprove.
5. (15 points) Evaluate the integral

$$
\int_{0}^{\infty} \frac{1-\cos a x}{x^{2}} d x
$$

for $a \in \mathbb{R}$.
6. (10 points) Let f be an entire function such that $\operatorname{Re}(f(z)) \geq-2$ for all $z \in \mathbb{C}$. Show that f is constant.
7. (10 points) Let f be a nonconstant entire function whose values on the real axis are real and nonnegative. Prove that all real zeros of f have even order.
8. (5 points) Find the general solution of $y^{\prime \prime}-3 y^{\prime}+2 y=t e^{3 t}$.
9. (5 points) Find the general solution of

$$
\left(2 x t+e^{x}\right) \frac{d x}{d t}+\left(x^{2}+\sin t\right)=0 .
$$

The general solution can be implicitly expressed.
10. (10 points) Let $x(t)$ be the solution to the initial problem

$$
x^{\prime}=\left(\begin{array}{ll}
0 & -2 \\
1 & -3
\end{array}\right) x+\binom{1}{1}, \quad x(0)=\binom{7 / 5}{5 / 2} .
$$

Then show that there exists a constant $C>0$ such that

$$
\left\|x(t)-x^{*}\right\|_{1} \leq C e^{-t}
$$

where $x^{*}=\binom{1 / 2}{1 / 2}$.

