January 2023

Do SIX problems out of the following seven problems.

- (1) [20 points] Find all possible ring homomorphisms $\phi : \mathbb{Z}_{11} \to \mathbb{Z}_{33}$. Justify your answer.
- (2) [20 points]
 - (a) Find a unique factorization domain (UFD) which is not a principal ideal domain (PID).
 - (b) Find an integral domain which is not a UFD.
- (3) [20 points] Let K be a finite field extension of degree n over \mathbb{Q} . Choose an element α in $K \setminus \mathbb{Q}$ and suppose that the minimal polynomial for α over \mathbb{Q} is

$$m_{\alpha,\mathbb{O}}(t) = t^d + a_1 t^{d-1} + a_2 t^{d-2} + \dots + a_{d-1} t + a_d.$$

We regard K as a \mathbb{Q} -vector space. We then define a \mathbb{Q} -linear operator

$$T_{\alpha}: K \to K$$

by $T_{\alpha}(v) = \alpha v$.

- (a) [6 points] What is the characteristic polynomial of T_{α} ?
- (b) [6 points] Does T_{α} have a Jordan canonical form? Justify your answer.
- (c) [8 points] Describe the rational canonical form of T_{α} .
- (4) [20 points] Denote by $\mathbb{C}(z)$ the field of rational functions in one variable z. Prove that the group of automorphisms of $\mathbb{C}(z)$ that leave the field \mathbb{C} of constant rational functions fixed is isomorphic to the quotient group of the general linear group $\mathrm{GL}(2,\mathbb{C})$ by its center. Note that the center of $\mathrm{GL}(2,\mathbb{C})$ is $\{\lambda I \mid \lambda \in \mathbb{C}^*\}$.
- (5) [20 points]
 - (a) Construct a finite field K of order 7^3 .
 - (b) Is K Galois over \mathbb{Z}_7 ? (Here, \mathbb{Z}_7 is considered as a subfield of K of order 7.)
- (6) [20 points] Let $f(x) = x^5 4x + 2 \in \mathbb{Q}[x]$.
 - (a) Show f is irreducible over \mathbb{Q} .
 - (b) Find the Galois group of the splitting field of f.
- (7) [20 points] Let K be the splitting field of $x^6 7^{\frac{1}{5}}$ over $\mathbb{Q}(7^{\frac{1}{5}}, e^{\frac{2\pi i}{6}})$. Is $\operatorname{Gal}(K/\mathbb{Q}(7^{\frac{1}{5}}, e^{\frac{2\pi i}{6}}))$ abelian? Justify your answer.

This is the end