

- **1.** (10 points) Let $f: \mathbb{R} \to \mathbb{R}$ be uniformly continuous with f(0) = 0. Prove that there exists a positive number B such that $|f(x)| \le 1 + B|x|$, for all x.
- **2.** (10 points) Let $f(x) = x \log(1 + \frac{1}{x})$, for x > 0. Show that f is strictly increasing and compute $\lim f(x)$ as $x \to 0$ and $x \to \infty$.
- **3.** (10 points) Suppose $x_1, x_2, x_3, ...$ is a sequence of non-negative real numbers satisfying

$$x_{n+1} \le x_n + \frac{1}{n^2}$$

for all $n \geq 1$. Prove that $\lim_{n \to \infty} x_n$ exists.