Discrete Math. Graduation Exam, Spring 2023

- 1. A semiconductor manufacturer runs m factories (they all produce the same product). She made a contract with n electronics companies. Each factory i is able to manufacture s_i chips. Every electronics company j determines a number d_j of chips that she thinks she will need next month. The manufacturer is able to transport $c_{i,j}$ chips every month from factory i to company j. The semiconductor manufacturer is concerned if the m factories can handle the demand of the n electronics companies and asks you to design an algorithm that checks for the upcoming month whether or not there is a way to distribute enough chips from the factories to the companies.
 - Design and analyze an algorithm for this problem. You should use a maximum flow algorithm.
- 2. Let G be a connected planar simple graph. Show that G has a vertex of degree not exceeding five. Hint: Try to prove this: every connected, simple planar graph with e edges and v vertices, with $v \ge 3$, satisfies $e \le 3v 6$.
- 3. The **rooted Fibonacci trees** T_n are defined recursively in the following way. T_1 and T_2 are both the rooted tree consisting of a single vertex, and for $n = 3, 4, \dots$, the rooted tree T_n is constructed from a root with T_{n-1} as its left subtree and T_{n-2} as its right subtree.
 - If n is a positive integer, find the number of vertices, leaves, and internal vertices of rooted Fibonacci tree T_n .