Graduation Examination (Fall 2022) Analysis I

- (10 points) Let X be a metric space and {x_n} be a convergent sequence in X with limit x₀. Prove that the set C = {x₀, x₁, x₂, x₃, ...} is compact.
- 2. (10 points) Let the real-valued function f : [0, 1] → R satisfy the following two properties:
 - (Intermediate Value Property) If [a, b] ⊂ [0, 1], then f([a, b]) contains
 the interval with endpoints f(a) and f(b).
 - For each c∈ R, the set f⁻¹(c) := {x ∈ [0, 1] : f(x) = c} is closed.

Prove that f is continuous.

3. (10 points) Define a sequence of real numbers $\{x_n\}$ by

$$x_0 = 1$$
, $x_{n+1} = \frac{1}{2 + x_n}$ for $n \ge 0$.

Show that $\{x_n\}$ converges. Evaluate its limit.