CALCULUS GRADUATION TEST/FALL SEMESTER, 2022

Problem 1. Find the local maximum and minimum values of the function f subject to the constraint g=0 (Hint: Use the Lagrange multiplier method). Let $f(x,y)=x^2+y$ and $g(x,y)=\frac{x^2}{8}+\frac{y^2}{2}-1=0$. Find the local maximum and minimum values of f subject to the constraint g=0.

Problem 2. Write down the definition for the saddle point at a critical point (a, b) of the function f. Discuss the local maximum, minimum and the saddle point for the function $f(x, y) = 3y^2 - 2y^3 - 3x^2 + 6xy$.

Problem 3. Let $\mathbf{F}(x,y) = (-y/(x^2 + y^2), x/(x^2 + y^2))$. Let D be the disk of radius R centered at the origin (0,0). Evaluate the integral

$$\int_{\Gamma} \mathbf{F} \cdot \mathcal{T} ds$$
,

where $\Gamma = \partial D$ is the boundary of D and oriented in the counterclockwise direction and T is the unit tangent vector on Γ .