Qualifying Examination - Analysis - July 2022.

1. (10 points) f is a real-valued continuous function on $[0,1]$ such that

$$
\int_{0}^{1} f\left(x^{1 / n}\right) d x=0, \quad n=1,2,3, \cdots
$$

Prove that $f \equiv 0$.
2. (10 points) Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n}(n!)^{\frac{1}{n}}=e^{-1}
$$

by considering integration of $\log x$.
3. (15 points) Consider the Riemann-Stieltjes integral with $\alpha(x)=\sum_{n=1}^{\infty} I(x-n)$ where

$$
I(x)= \begin{cases}0 & x \leq 0 \\ 1 & x>0\end{cases}
$$

Real function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by

$$
f(x, y)= \begin{cases}1 & x=y \\ -1 & y=x+1 \\ 0 & \text { otherwise }\end{cases}
$$

Check whether the following is true or not.

$$
\int_{y>-\frac{1}{2}} \int_{x>-\frac{1}{2}} f(x, y) d \alpha(x) d \alpha(y)=\int_{x>-\frac{1}{2}} \int_{y>-\frac{1}{2}} f(x, y) d \alpha(y) d \alpha(x)
$$

(We define $\iint f(x, y) d \alpha(x) d \alpha(y):=\int\left[\int f(x, y) d \alpha(x)\right] d \alpha(y)$)
4. (15 points) Consider the following integral equation,

$$
f(x)=\lambda \int_{a}^{x} K(x, y) f(y) d y+\varphi(x), \quad \lambda \in \mathbb{R}
$$

where $K(x, y)$ is a real continuous function on $[a, b] \times[a, b]$ and φ is also a given real continuous function on $[a, b]$.
(a) (5 points) Let define $\Phi(f)(x)$ for $f \in \mathcal{C}([a, b], \mathbb{R})$ (continuous real function defined in $[a, b]$) as

$$
\Phi(f)(x)=\lambda \int_{a}^{x} K(x, y) f(y) d y+\varphi(x) .
$$

Show that $\Phi(f) \in \mathcal{C}([a, b], \mathbb{R})$.
(b) (10 points) Show that the integral equation $\Phi(f)=f$ has a unique solution $f \in \mathcal{C}([a, b], \mathbb{R})$ for any λ.
5. (10 points) Let a and b be complex numbers whose real parts are negative or 0 . Prove the inequality

$$
\left|e^{a}-e^{b}\right| \leq|a-b|
$$

6. (10 points) For each $k>0$, let X_{k} be the set of analytic functions $f(z)$ on the open unit disc \mathbb{D} such that

$$
\sup _{z \in \mathbb{D}}\left((1-|z|)^{k}|f(z)|\right)
$$

is finite. Show that $f \in X_{k}$ if and only if $f^{\prime} \in X_{k+1}$.
7. (10 points) Does there exist a function f, analytic in the punctured plane $\mathbb{C} \backslash\{0\}$, such that

$$
|f(z)| \geq \frac{1}{\sqrt{|z|}}
$$

for all nonzero z ?
8. (10 points) Find at least two solutions of the initial value problem

$$
y^{\prime}=\sqrt{y}, \quad y(0)=0 .
$$

Explain why there does not exist a unique solution.
9. (10 points) Find the solution of the following initial value problem

$$
\boldsymbol{x}^{\prime}(t)=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right) \boldsymbol{x}+\binom{1}{0}, \quad \boldsymbol{x}(0)=\binom{1}{1}
$$

