Your score will be the sum of credits below multiplied by 10/9. Total score is 100.

- 1. (15 pts) Let A be an n by n matrix. If $A^m = I$ for some $m \in \mathbb{N}$, is A is diagonalizable? Prove or disprove it.
- 2. (15 pts) List, by giving generators for them, all prime ideals of $\mathbb{Z}[x]/\langle 12, x^2 + x + 1 \rangle$. Caution that you should not include 0 as a generator of your ideal. You must justify your answer.
- 3. (15 pts) Let \mathbb{F}_q be the finite field of q elements.
 - (a) (5 pts) For an arbitrary prime integer p, prove that the number of monic irreducible polynomials of degree p in $\mathbb{F}_q[x]$ is $\frac{q^p-q}{p}$.

Hint: Consider the splitting field of such polynomial.

- (b) (5 pts) Find the number of conjugacy classes in the group $GL_5(\mathbb{F}_q)$ which does not have eigenvalues in \mathbb{F}_q . You must justify your answer.
- (c) (5 pts) Find the number of conjugacy classes in the group $GL_5(\mathbb{F}_q)$ which does not have eigenvalues in \mathbb{F}_q but have eigenvalues in the quadratic field extension of \mathbb{F}_q . You must justify your answer.

4. (15 pts)

- (a) (5 pts) Show $\mathbb{Z}[x]/\langle x^2+1\rangle$ is an Euclidean domain.
- (b) (5 pts) Using the fact that $\mathbb{Z}[x]/< x^2+1>$ is a Euclidean domain, describe all the integer points of $x^2+y^2=z^2$.
- (c) (5 pts) Is $\mathbb{Z}[x]/\langle x^2+5\rangle$ a Euclidean domain? Prove or disprove it.
- 5. (15 pts) Determine if the following statement is true. Justify your answer.: The splitting field in $\overline{\mathbb{Q}}$ of $x^{70} 1 \in \mathbb{Q}[x]$ should be the same as the splitting fields in $\overline{\mathbb{Q}}$ of $(x^7 1)(x^{10} 1)$ over \mathbb{Q} .
- 6. (15 pts) Determine if the following statement is true. Justify your answer.: Let $\alpha = \sqrt{3 \sqrt{3}}$. Then $\mathbb{Q}(\alpha)$ should be a normal extension over \mathbb{Q} with a cyclic Galois group $Gal(\mathbb{Q}(\alpha)/\mathbb{Q})$.