1. (10점) Show that a function $f: X \rightarrow Y$ is one-to-one if and only if $f \circ g: A \rightarrow Y$ is one-to-one for any one-to-one function $g: A \rightarrow X$, where A is any set of two elements.
2. (10점) Suppose that we are given a code table:

$$
\{\operatorname{Code}(a)=1, \operatorname{Code}(b)=2, \cdots, \operatorname{Code}(z)=26, \operatorname{Code}(\text { blank })=0\} .
$$

We want to store the part "to be or not" from a sentence in Hamlet as a number x_{b} in the interval $(0,1)$ using the numeral system with base b, such that

$$
A_{b}[k]=\left\lfloor x_{b} \times b^{10 k}\right\rfloor \quad \bmod b^{10},
$$

where $A_{b}[k]$ is base-b representstion of code of the k-th letter in the sentence.
$\left(\mathrm{eg} A_{10}[1]=\operatorname{Code}(t)=20, A_{10}[2]=\operatorname{Code}(o)=15, A_{10}[3]=\operatorname{Code}(\right.$ blank $)=0$, and so on.) Write the number x_{b} when $b=2$ (binary case).
3. (하나 : 7점, 둘다 : 10점) Rewrite the left hand side of the following expression in (a)postfix or (b)prefix forms only using operations from $\times, \div,+$, (Don't use exponentiation and parentheses in your final forms.):

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

(Note that x^{2} means $x \times x$.)

