Qualifying Exam: Real Analysis Summer, 2015

6 problems, 100 points

1.(15 points) Suppose $\{\alpha_j\}_{j=1}^{\infty} \subset (0,1)$. Show that $\prod_{j=1}^{\infty} (1-\alpha_j) > 0$ if and only if $\sum_{j=1}^{\infty} \alpha_j < \infty$. (Hint. Compare $\sum_{j=1}^{\infty} \log(1-\alpha_j)$ to $\sum_{j=1}^{\infty} \alpha_j$.)

2.(15 points) Let (X, μ) be a measure space with a (positive) measure μ . Let $\{f_n : X \to \mathbb{R} : n = 1, 2, \cdots\}$ be a sequence of measurable functions which satisfy the following properties:

- (i) For each $n = 1, 2, \dots, f_n$ satisfies $|f_n| \leq g$ where $g \in L^1(X, \mu)$,
- (ii) f_n converges to a measurable function f almost everywhere on X.

Prove the following statement: For any given constant $\varepsilon > 0$, there exists a measurable set $E \subset X$ such that $\mu(E) < \varepsilon$, and f_n converges to f uniformly on $X \setminus E$.

(CAUTION: This is a variation of Egoroff's Theorem. DO NOT simply quote Egoroff's theorem to prove the statement.)

3.(25 points) In \mathbb{R}^n , set $B_r(x) := \{ y \in \mathbb{R}^n : |y - x| < r \}$ for each r > 0. And, let m(E) be the Lebesgue measure of a Lebesgue measurable set $E \subset \mathbb{R}^n$

For $f \in L^1_{loc}(\mathbb{R}^n)$, Hardy-Littlewood maximal function Hf is defined by

$$Hf(x) = \sup_{r>0} \frac{1}{m(B_r(x))} \int_{B_r(x)} |f(y)| dy.$$

(a) (15 points) Prove the Maximal Theorem. In other words, show that there exists a constant C > 0 such that for any $f \in L^1(\mathbb{R}^n)$ and for any $\alpha > 0$, Hf satisfies

$$m(\lbrace x \in \mathbb{R}^n : Hf(x) > \alpha \rbrace) \le \frac{C}{\alpha} ||f||_{L^1(\mathbb{R}^n)}$$

(b) (10 points) Suppose that $f \in L^1(\mathbb{R}^n)$ and $||f||_{L^1(\mathbb{R}^n)} > 0$. Show that there exist constants C, R > 0 such that

$$Hf(x) \ge C|x|^{-n}$$
 for $|x| > R$.

4.(15 points) For a Banach space \mathcal{B} , set $\partial B_1(\mathbf{0}) := \{ w \in \mathcal{B} : ||w||_{\mathcal{B}} = 1 \}$. For a bounded linear mapping $T : \mathcal{B} \to \mathcal{B}$, the norm ||T|| of the mapping T is defined by

$$||T|| := \sup_{w \in \partial B_1(\mathbf{0})} ||Tw||_{\mathcal{B}}.$$

Prove the following statement: If a bounded linear mapping $T: \mathcal{B} \to \mathcal{B}$ satisfies

$$||I - T|| < 1$$

where I is the identity mapping (i.e., Iw = w for all $w \in \mathcal{B}$), then T is invertible.

5.(15 points) For a Hilbert space \mathcal{H} equipped with an inner product $\langle \cdot, \cdot \rangle$, define the norm of $w \in \mathcal{H}$ by

$$||w|| = \sqrt{\langle w, w \rangle}.$$

Fix $u \in \mathcal{H}$, and a constant $R_0 > 0$. Define a subset $K_u(R) \subset \mathcal{H}$ by

$$K_u(R) = \{ w \in \mathcal{H} : \langle w, u \rangle \ge R_0 \}.$$

Show that there exists a unique $w_0 \in K_u(R)$ such that

$$||w_0|| = \inf_{w \in K_u(R)} ||w||.$$

Hint. Use the Parallelogram Law: For all $p, q \in \mathcal{H}$,

$$||p+q||^2 + ||p-q||^2 = 2(||p||^2 + ||q||^2).$$

6.(15 points) Let (X, μ) be a measure space with a (positive) measure μ . Suppose that $f \in L^p(X, \mu) \cap L^\infty(X, \mu)$ for some 1 . Show that

$$\lim_{q \to \infty} ||f||_{L^q(X)} = ||f||_{L^{\infty}(X)}.$$