1. Let A be an invertible square matrix. For some permutation P, Gaussian elimination gives LU-decomposition:

$$
P A=L U .
$$

There may also exist some other permutation \widetilde{P} which gives another LU-decomposition

$$
\widetilde{P} A=\widetilde{L} \widetilde{U}
$$

Prove that the set of absolute values of the pivots may be different, in other words,

$$
\left\{\left|u_{k k}\right|: 1 \leq k \leq n\right\} \neq\left\{\left|\widetilde{u}_{k k}\right|: 1 \leq k \leq n\right\} .
$$

(Hint : Find an example in 2×2-case.)
2. The so called Mercedes-Benz system in \mathbb{R}^{2} is defined by

$$
\left\{v_{0}, v_{1}, v_{2}\right\}, \quad \text { with } \quad v_{k}=\left[\begin{array}{c}
\cos (2 k \pi / 3) \\
\sin (2 k \pi / 3)
\end{array}\right] .
$$

Find the vectors $\left\{w_{0}, w_{1}, w_{2}\right\}$ in \mathbb{R}^{3} orthogonal to each other and of the same length so that

$$
v_{k}=P_{x y}\left(w_{k}\right), \quad(0 \leq k \leq 2) \text { where } P_{x y} \text { is the projection onto xy-plane. }
$$

(Consider \mathbb{R}^{2} as a subspace of \mathbb{R}^{3} with z-coordinate zero.)
3. Let A and B be $n \times n$ matrices for some $n \in \mathbb{N}$, satisfying

$$
A=S B S^{-1}
$$

for some matrix S and let

$$
p(M)=\sum_{k=0}^{\ell} a_{k} M^{k}, \quad \text { with } \quad M^{0}=I_{n}
$$

for an $n \times n$ matrix M, where $p(x)=\sum_{k=0}^{\ell} a_{k} x^{k}$ is a degree ℓ polynomial with real coefficients.
(a) Prove that

$$
p(A)=S p(B) S^{-1}
$$

(b) When B is a diagonal matrix with $b_{k k}=\lambda_{k}$ for $1 \leq k \leq n$, prove that

$$
\operatorname{det}(p(A))=p\left(\lambda_{1}\right) p\left(\lambda_{2}\right) \cdots p\left(\lambda_{n}\right)
$$

