1. Let X be a real-valued random variable with density f (with respect to μ), and ψ be a non-negative Borel-measurable function on \Re . Show that

$$E[\psi(X)] = \int_{\Re} \psi(x) f(x) \mu(dx).$$

- 2. Let X_1, X_2, \ldots be a sequence of random variables converging to X almost surely. Furthermore, there is M > 0 such that $|X_n| \leq M$ for all n. Prove that $\lim E|X_n X| = 0$.
- 3. Let X and Y be random variables on a probability space (Ω, \mathcal{F}, P) , and $X \leq Y$ almost surely. For any sub σ -field \mathcal{G} of \mathcal{F} , show that

$$E(X|\mathcal{G}) \leq E(Y|\mathcal{G})$$
, almost surely.

- 4. Let $\{X_n; n=0,1,\ldots\}$ be a martingale, and let τ be stopping time such that $0 \leq \tau \leq K$ with probability 1 for some integer K. Verify that $E(X_{\tau}) = E(X_0)$.
- -The end-