Q.E. OF ALGEBRA II, DEC. 2012

- (1) (25 points) Let K be a finite field extension of a field F.
 - (a) (25 points) Show that there exist only finitely many subfields of K containing F if and only if there is an $\alpha \in K$ such that $K = F(\alpha)$.
 - (b) (5 points bonus points) Find an element $\alpha \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$ such that $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- (2) (25 points) Let K be a Galois extension over F with a cyclic Galois group of order n generated by σ . Then additive Hilbert's theorem 90 says that if $\alpha \in K$ satisfies that $\operatorname{Tr}_{K/F}(\alpha) = 0$, then α is of the form $\alpha = \beta \sigma\beta$ for some $\beta \in K$ (you do not have to prove this).
 - Let F be a field of characteristic p and let K be a cyclic extension of F of degree p. Prove that $K = F(\alpha)$ where α is a root of the polynomial $x^p - x + a$ for some $a \in F$ (Hint: use the above additive Hilbert's theorem 90).
- (3) (25 points) Determine the Galois group G of the splitting field of $x^8 2$. Use a group presentation of G, i.e. find generators of the Galois group and relations among them, in order to determine G and also find the order of G.
- (4) (25 points) Let I be an ideal of a commutative ring R with identity 1. The radical of I, denoted $\operatorname{Rad}(I)$, is defined as the ideal $\bigcap_P P$ where the intersection is taken over all prime ideals containing I.
 - (a) (5 points) Find Rad(6 \mathbb{Z}) and Rad(64 \mathbb{Z}) in \mathbb{Z} .
 - (b) (20 points) Prove that $Rad(I) = \{r \in R : r^n \in I \text{ for some } n > 0\}.$